Exercise 6

Verify
(a) the associative law for addition of complex numbers, stated at the beginning of Sec. 2;
(b) the distributive law (3), Sec. 2.

Solution

Part (a)

The associative law for addition of complex numbers states that

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) .
$$

To verify it, let $z_{1}=6 i$ and $z_{2}=-1+2 i$ and $z_{3}=2-4 i$. Check to see whether both sides are equal.

$$
\begin{aligned}
{[(6 i)+(-1+2 i)]+(2-4 i) } & \stackrel{?}{=}(6 i)+[(-1+2 i)+(2-4 i)] \\
(-1+8 i)+2-4 i & \stackrel{?}{=} 6 i+(1-2 i) \\
1+4 i & =1+4 i
\end{aligned}
$$

The associative law for addition is verified.

Part (b)

The distributive law states that

$$
z\left(z_{1}+z_{2}\right)=z z_{1}+z z_{2} .
$$

To verify it, let $z_{1}=6 i$ and $z_{2}=-1+2 i$ and $z=3+5 i$. Check to see whether both sides are equal.

$$
\begin{aligned}
(3+5 i)[(6 i)+(-1+2 i)] & \stackrel{?}{=}(3+5 i)(6 i)+(3+5 i)(-1+2 i) \\
(3+5 i)(-1+8 i) & \stackrel{?}{=}\left(18 i+30 i^{2}\right)+\left(-3+6 i-5 i+10 i^{2}\right) \\
-3+24 i-5 i+40 i^{2} & \stackrel{?}{=} 18 i-30-3+i-10 \\
-3+19 i-40 & \stackrel{?}{=} 19 i-43 \\
-43+19 i & =-43+19 i
\end{aligned}
$$

The distributive law is verified.

